Что вольт амперная характеристика диода. Особенности вольт-амперных характеристик выпрямительных диодов

Диод – нелинейный пассивный элемент, простейший прибор на основе полупроводника с одним p-n переходом и двумя выводами. Является одним из основных компонентов электронных устройств. Не углубляясь в физику процессов, происходящих в полупроводниковых структурах, следует отметить основное его назначение – пропускать ток в одном направлении. Выводы диода называются анодом и катодом, на обозначении стрелка – это анод, она же указывает на направление тока.

Свойства и вольт-амперная характеристика

Если к аноду приложить положительное напряжение, то диод становится открытым, при этом его можно рассматривать как проводник, работающий в «одну сторону», при смене полярности (отрицательном напряжении на аноде) диод закрыт. Надо отметить, что прохождение тока в прямом направлении вызывает некоторое уменьшение напряжения на катоде, вызванное особенностями проводимости полупроводников. Падение напряжения для разных типов приборов составляет 0,3-0,8 вольт, в большинстве случаев им можно пренебречь.

Поведение диода при разных значениях протекающего тока, величины и полярности приложенного напряжения, в виде графика представляется как вольт амперная характеристика полупроводникового диода.

Часть графика, находящаяся в правой верхней части, соответствует прямому направлению тока. Чем ближе эта ветвь к вертикальной оси, тем меньше падение напряжения на диоде, её наклон указывает на эту величину при разных токах. Для идеального диода она не имеет наклона и почти совпадает с осью ординат, но реальный полупроводник не может обладать такими характеристиками.

В левом нижнем квадранте отображается зависимость тока от напряжения обратной полярности – в закрытом состоянии. Обратный ток для приборов общего назначения исчезающе мал, его не принимают во внимание до момента пробоя – возрастания обратного напряжения до недопустимой для конкретного типа величины. Большинство диодов при таком напряжении не могут работать, температура значительно возрастает, и прибор окончательно выходит из строя. Напряжение, при котором существует вероятность пробоя, называют обратным пиковым, обычно оно в несколько раз превышает рабочее, в документации указывается допустимое время – в пределах микросекунд.

Для измерения параметров применяется элементарная схема с прямым и обратным включением диодов.

В технических описаниях вольт амперная характеристика диода в графическом представлении, как правило, не приводится, а указываются наиболее значимые точки характеристики, например, для часто используемых выпрямительных диодов:

  • Максимальный и пиковый выпрямленный ток;
  • Среднеквадратичное и пиковое значение обратного напряжения;
  • Наибольший обратный ток;
  • Падение напряжения при различном прямом токе.

Кроме указанных параметров, не меньшее значение имеют и другие свойства: статическое сопротивление, для импульсных диодов – граничная частота, ёмкость p – n перехода. Приборы специального назначения также имеют специфические характеристики и другой вид ВАХ полупроводникового диода.

Отдельный тип диодов работает в области электрического пробоя, они применяются для стабилизации напряжения – это стабилитроны. От ВАХ диода характеристика стабилитрона отличается резким уходом вниз левой ветви графика и малым её отклонением от вертикали. Эта точка на оси абсцисс называется напряжением стабилизации. Стабилитрон включается только с резистором, ограничивающим ток через него.

Видео

Вольтамперная характеристика (ВАХ) представляет собой график зависимости тока во внешней цепи p-n-перехода от значения и полярности напряжения, прикладываемого к нему. Эта зависимость может быть получена экспериментально или рассчитана на основании уравнения вольтамперной характеристики. Тепловой ток p-n-перехода зависит от концентрации примеси и температуры. Увеличение температуры p-n-перехода приводит к увеличению теплового тока , а, следовательно, к возрастанию прямого и обратного токов.Увеличение концентрации легирующей примеси приводит к умень-шению теплового то-ка, а, следовательно, к уменьшению прямого и обратного токов p-n-перехода.

14. Пробой p - n –перехода – называют резкое изменение режима работы перехода, находящегося под обратным напряжением. Сопровождающееся

Резким увеличением обратного тока , при незначительно уменьшающемся и даже убывающем обратном напряжении:

Три вида пробоя:

1.Тунельный (электрический) – явление прохождение электронов через потенциальный барьер;

2. Лавинный (электрический) – возникает, если, при движении до очередного соударения с атомом дырка(электрон) приобретает энергию достаточную для ионизации атома;

3. Тепловой пробой (необратим) – возникает при разогреве полупроводника и соответствующем увеличением удельной проводимости.

15. Выпрямительный диод: назначение,вах, основные параметры, уго

Выпрямительные диоды служат для преобразования переменного тока в пульсирующий ток одного направления и используется в источниках питания радиоэлектронной аппаратуры.

Германиевые выпрямительные диоды

Изготовление германиевых выпрямительных диодов начинается с вплавления индия в исходную полупроводниковую пластину германия n-типа. В свою очередь исходная пластина припаивается к стальному кристаллодержателю для маломощных выпрямительных диодов или к медному основанию для мощных выпрямительных диодов.

Рис 24 конструкция маломощного сплавного диода. 1- кристаллодержатель; 2 – кристалл; 3 – внутр. вывод; 4 – коваровый корпус; 5 – изолятор; 6 – коваровая трубка; 7 – внешний вывод

Рис 25 ВАХ германиевого диода

Из рис 25 видно, что с ростом температуры в значительной степени увеличивается обратный ток диода, а величина пробивного напряжения уменьшается.

Германиевые диоды различного назначения имеют величину выпрямленного тока от 0,3 до 1000А. Прямое падение напряжения не превышает 0,5В, а допустимое обратное напряжение 400В. Недостатком германиевых диодов является их необратимый пробой даже при кратковременных импульсных перегрузках

Кремниевые выпрямительные диоды

Для получения p-n перехода в кремниевых выпрямительных диодах осуществляют вплавление алюминия в кристалл кремния n-типа, или сплава золота с сурьмой в кремний p-типа. Для получения переходов используют также диффузионные методы. Конструкции ряда маломощных кремниевых диодов практически не отличается от конструкций аналогичных германиевых диодов.

Свойства диода определяются его вольт - амперной характеристикой (ВАХ), которая показана на рис. 2.7. Приближенно она может быть описана уравнением

I =I 0 (e U / m j т – 1), (2.1)

где I 0 – ток насыщения обратносмещенного перехода (обратный тепловой ток); U –напряжение на p -n – переходе; j т =kT /q – тепловой потенциал, равный контактной разности потенциалов j к на границе p -n перехода при отсутствии внешнего напряжения; k =1,38×10 -23 Дж/К–постоянная Больцмана; Т –абсолютная температура; q =1,6×10 -19 кулон – заряд электрона; m – поправочный коэффициент, учитывающий отклонение от теории. При температуре Т =300К, j т =0,026 В.

Рис. 2.7

На ВАХ различают две ветви: прямая ветвь , которая находится в первом квадрате и обратная ветвь в третьем квадрате. Уравнение (2.1) хорошо описывает характеристику реального диода в прямом направлении и для небольших токов. В соответствии с (2.1) сопротивление диода является нелинейным. В случае линейного сопротивления ВАХ была бы прямая линия.

На прямой ветви реальной ВАХ имеется резкий загиб, который характеризуется напряжением включения . Для германиевых диодов напряжение включения равно примерно 0,3 В, для кремниевых – примерно 0,6 В.

Значение обратного тока на обратной ветви примерно постоянно в широком диапазоне напряжения. При превышении определенного значения обратного напряжения, называемого напряжением пробоя U проб, начинается лавинообразный процесс нарастания обратного тока, соответствующий электрическому пробою p - n – перехода. Если в этот момент ток не ограничить, то электрический пробой перейдет в тепловой. Тепловой пробой обусловлен ростом числа носителей в p-n – переходе. При этом мощность, выделяющаяся в диоде U обр I обр, не успевает отводиться от перехода, его температура растет, растет обратный ток и, следовательно, продолжает расти мощность. Тепловой пробой необратим, т.к. разрушает p n – переход.

Для диода оговаривается несколько основных параметров :

Номинальный прямой ток;

Максимальное обратное напряжение;

Прямое падение напряжения;

Постоянный обратный ток;

Максимальный прямой ток (для него оговаривается режим работы, например, время проводимости).

Преобладают кремниевые диоды, так как имеют более высокую предельную рабочую температуру (150 о С против 75 о С для германиевых), допускают большую плотность прямого тока (60 ¸ 80 А/см 2 по сравнению с 20 ¸ 30 А/см 2), обладают меньшими обратными токами (примерно на порядок) и большими допустимыми обратными напряжениями (1500¸2800 В по сравнению с 600¸800 В). Однако кремниевые диоды имеют большее прямое падение напряжения, которое. для германиевых диодов U пр =0,3¸0,4В, а для кремниевых диодов U пр =0,6¸1,2 В.

Работоспособность диода определяется выделяемой на нем мощностью P =UI . U и I относятся к определенной точке ВАХ. Мощность определяет нагрев. Рабочий участок диода на ВАХ рис. 2.7 отмечен жирной линией. Если диод начинает работать на нерабочих участках ВАХ, он выходит из строя, поскольку мощность превышает допустимую, нагрев превышает допустимый и диод разрушается.

При рассмотрении режимов работы схем с диодами их представляют в виде идеализированных приборов, которые являются идеальными проводниками в прямом направлении и идеальными изоляторами в обратном направлении. Идеализированная ВАХ представлена на рис. 2.8, а зависимость ВАХ от температуры показана на рис. 2.9.

Рис. 2.8 Рис. 2.9

Типы диодов

По назначению различают следующие типы диодов:

– выпрямительные;

– импульсные;

– высокочастотные;

– стабилитроны и стабисторы.

Диоды различают также по мощности и по частотным свойствам.

Выпрямительные диоды . Предназначены для работы при напряжениях частоты до нескольких кГц и при некрутых фронтах питающего напряжения. Не предназначены для прямоугольного питающего напряжения. Для выпрямительных диодов оговариваются два основных параметра:

1.Ток прямой номинальный (среднее значение).

Диоды выпускаются на ток 10 мА–1000 А. Обратное напряжение находится в пределах от 10 В до нескольких кВ. Для мощных диодов (ток > 10 А) обратное напряжение определяют классом диода. Класс диода – это 100В, умноженное на цифру класса. Цифра класса от 1 до 20. Например: Д50-12, здесь 50 -ток прямой номинальный в А; 12 - класс. Класс - это параметр, используемый для мощных диодов и характеризующий обратное напряжение. У мощных диодов номинальный прямой ток допустим только при установке диода на радиатор и при принудительном охлаждении со скоростью воздуха 12м/с. Без принудительного охлаждения воздухом (имеется только радиатор) допустимый ток составляет около 30% от номинального. У современных диодов распространены следующие обозначения: ДXXXY или КДXXXY , где КД - кремниевый диод, XXX - цифры, Y - буква. Первая цифра говорит о виде диода (выпрямительные - 1, 2). Буква определяет обратное напряжение.

Второстепенные параметры:

1.Максимальный обратный ток I обр.макс (от десятков нА до десятков мА).

2.Прямое падение напряжения U пр (0,3¸1,2В).

3. Максимальная рабочая частота, до которой обеспечиваются заданные токи, напряжения и мощность.

Рис. 2.10

4. Время восстановления запирающих свойств диода.

Диод не проводит (или запирается) при приложении обратного напряжения. Запирание - переход от проводящего состояния к непроводящему. При приложении прямоугольного обратного напряжения диод ведет себя как показано на рис. 2.10. Интервал I - время рассасывания носителей, интервал II - бросок обратного тока. Он связан с наличием барьерной емкости диода. Интервал t в – время восстановления, т.е. время перехода от проводящего состояния до момента установления обратного тока на ВАХ. Из-за неидеальности диода ограничивается предельная частота его работы. При очень высокой частоте диод перестает выполнять свои функции.

Рис. 2.11

Высокочастотные диоды . Для них оговариваются те же параметры (основные и второстепенные), но они могут работать при высокой частоте и обладают малым временем восстановления (по сравнению с выпрямительными). Для них приводится график прямого тока в зависимости от частоты. График представлен на рис. 2.11.

Импульсные диоды . Оговариваются те же основные параметры, что и для рассмотренных выше диодов, и приводится еще важный второстепенный параметр – импульсный ток за оговоренное время.

Стабилитроны и стабисторы . Рабочей частью ВАХ у стабилитронов является обратная ветвь. Прямая ветвь такая же, как у диодов, она также может использоваться.

ВАХ стабилитрона представлена на рис. 2.12. Для стабилитронов указывается два основных параметра:

U ст – напряжение стабилизации стабилитрона;

Iст.н – номинальный ток стабилитрона.

Рис. 2.12 Рис. 2.13

U ст =3,3¸170В. Для U ст указывается разброс в процентах или в вольтах, а также изменение U ст при изменении температуры. У маломощных стабилитронов I ст.min =1¸3m А, I с т. max =30m A. I ст.н у мощных стабилитронов составляет несколько сот m A.

Стабисторы – это стабилитроны, у которых используется прямая ветвь ВАХ, т.е. это диод с большим падением напряжения, которое постоянно при изменении тока. ВАХ стабистора показана на рис. 2.13. Такая ВАХ создается технологически. Стабилитроны и стабисторы могут соединяться последовательно, но не параллельно. Они используются в стабилизаторах и ограничителях напряжения.

Контрольные вопросы

1. Что такое потенциальный барьер полупроводникового диода и как он формируется?

2. Охарактеризуйте кратко схемы включения полупроводникового диода.

3. Охарактеризуйте реальную и идеальную вольт – амперные характеристики полупроводникового диода.

4. Перечислите основные параметры полупроводникового диода.

5. Охарактеризуйте основные типы диодов.

6. Перечислите второстепенные параметры полупроводникового диода.

7. Как осуществляется маркировка полупроводникового диода?

Принцип работы, основные характеристики полупроводниковых выпрямительных диодов можно рассмотреть используя их вольтамперную характеристику (ВАХ), которая схематично представлена на рисунке 1.

Она имеет две ветви, соответствующие прямому и обратному включению диода.

При прямом включении выпрямительного диода ощутимый ток через него начинает протекать при достижении на диоде определенного напряжения Uоткр. Этот ток называется прямым Iпр. Его изменения на напряжение Uоткр влияют слабо, поэтому для большинства расчетов можно принять его значение:

  • 0,7 Вольт для кремниевых диодов,
  • 0,3 Вольт - для германиевых.

Естественно, прямой ток диода до бесконечности увеличивать нельзя, при его определенном значении Iпр.макс этот полупроводниковый прибор выйдет из строя. Кстати, существуют две основные неисправности полупроводниковых диодов:

  • пробой - диод начинает проводить ток в любом направлении, то есть станет обычным проводником. Причем, сначала наступает тепловой пробой (это состояние обратимо), затем электрический (после этого диод можно смело выбрасывать),
  • обрыв - здесь, думаю, пояснения излишни.

Если диод подключить в обратном направлении, через него будет протекать незначительный обратный ток Iобр, которым, как правило, можно пренебречь. При достижении определенного значения обратного напряжения Uобр обратный ток резко увеличивается, прибор, опять же, выходит из строя.

Числовые значения рассмотренных параметров для каждого типа диода индивидуальны и являются его основными электрическими характеристиками. Должен заметить, что существует ряд других параметров (собственная емкость, различные температурные коэффициенты и пр.), но для начала хватит перечисленных.

Здесь предлагаю закончить с чистой теорией и рассмотреть некоторые практические схемы.

СХЕМЫ ПОДКЛЮЧЕНИЯ ДИОДОВ

Для начала давайте рассмотрим как работает диод в цепи постоянного (рис.2) и переменного (рис.3) тока, что следует учитывать при том или ином включении диодов.


При подаче на диод прямого постоянного напряжения через него начинает протекать ток, определяемый сопротивлением нагрузки Rн. Поскольку он не должен превышать предельно допустимого значения следует определить его величину, после чего выбрать тип диода:

Iпр=Uн/Rн - все просто - это закон Ома.

Uн=U-Uоткр - см. начало статьи. Иногда величиной Uоткр можно пренебречь, бывают случаи, когда ее необходимо учитывать, например при расчете схемы подключения светодиода.

Это самое основное, про что надо помнить.

Теперь - несколько схем подключения диодов, часто встречающихся на практике.


Вне всякого сомнения, лидером здесь является мостовая схема диодов, используемая во всевозможных выпрямителях (рисунок 4). Выглядеть она может по разному, принцип действия одинаков, думаю из рисунка все ясно. Кстати, последний вариант - условное обозначение диодного моста в целом. Применяется для упрощения обозначения двух предыдущих схем.


  1. Диоды могут выступать как "развязывающие" элементы. Управляющие сигналы Упр1 и Упр2 объединяются в точке А, причем взаимное влияние их источников друг на друга отсутствует. Кстати, это простейший вариант реализации логической схемы "или".
  2. Защита от переполюсовки (жаргонное - "защита от дураков"). Если существует возможность неправильного подключения полярности напряжения питания эта схема защищает устройство от выхода из строя.
  3. Автоматический переход на питание от внешнего источника. Поскольку диод "открывается", когда напряжение на нем достигнет Uоткр, то при Uвнеш питание осуществляется от внутреннего источника, иначе - подключается внешний.

© 2012-2017 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Существует немало устройств, созданных с целью преобразования электрического тока, и выпрямительные диоды – одни из них.

Выпрямительный диод – преобразователь тока переменного в постоянный. Является одним из видов полупроводников. Широкое применение получил благодаря основной характеристике – переводу электрического тока строго в одном направлении.

Принцип действия

Необходимый эффект при работе устройства создают особенности p-n перехода . Заключаются в том, что рядом с переходом двух полупроводников встраивается слой, который характеризуется двумя моментами: большим сопротивлением и отсутствием носителей заряда. Далее при воздействии на данный запирающий слой переменного напряжения извне толщина его уменьшается и впоследствии исчезает. Возрастающий во время этого ток и является прямым током, который проходит от анода к катоду. В случае перемены полярности внешнего переменного напряжения запирающий слой будет больше, и сопротивление неминуемо возрастет.


ВАХ выпрямительного диода (вольт-амперная характеристика) также дает представление о специфике работы выпрямителя и является нелинейной. Выглядит следующим образом: существует две ветви – прямая и обратная. Первая отражает наибольшую проводимость полупроводника при возникновении прямой разницы потенциалов. Вторая указывает на значение низкой проводимости при обратной разнице потенциалов.

Вольт-амперные характеристики выпрямителя прямо пропорциональны температуре, с повышением которой разность потенциалов сокращается. не пройдет через устройство в случае низкой проводимости, но лавинный пробой происходит в случае возросшего до определенного уровня обратного напряжения.

Использование сборки

При эксплуатации выпрямительного полупроводникового диода польза извлекается только из половины волн переменного тока, соответственно, безвозвратно теряется более половины входного напряжения.

С целью улучшить качество преобразования переменного тока в постоянный используется сборка из четырех устройств – диодный мост. Выгодно отличается тем, что пропускает ток на протяжении каждого полупериода. Диодные мосты производят в виде комплекта, заключенного в пластиковый корпус.

Принципиальная схема диодного моста

Физико-технические параметры

Основные параметры выпрямительных диодов базируются на таких значениях:

  • максимально допустимом значении разницы потенциалов при выпрямлении тока, при котором устройство не выйдет из строя;
  • наибольшем среднем выпрямленном токе;
  • наибольшем значении обратного напряжения.

Выпрямители промышленность выпускает с разными физическими характеристиками. Соответственно, устройства имеют разную форму и способ монтажа. Разделяются при этом на три группы:

  1. Выпрямительные диоды большой мощности. Характеризуются пропускной способность ю тока до 400 А и являются высоковольтными. Высоковольтные выпрямительные диоды производятся в корпусах двух видов –штыревом, где корпус герметичный и стеклянный, и таблеточном, где корпус из керамики.
  2. Выпрямительные диоды средней мощности. Обладают пропускной способность от 300 мА до 10А.
  3. Выпрямительные диоды малой мощности. Максимально допустимое значение тока – до 300 мА.


Выбор выпрямительных диодов

При приобретении устройства необходимо руководствоваться такими параметрами:

  • значениями вольт-амперной характеристики максимально обратного и пикового тока;
  • максимально допустимым обратным и прямым напряжением;
  • средней силой выпрямленного тока;
  • материалом прибора и типом монтажа.

В зависимости от физических характеристик на корпус устройства наносится соответствующее обозначение. Каталог с маркировкой выпрямительных диодов представлен в специализированном справочнике. Необходимо знать, что маркировка импортных аналогов отличается от отечественных.

Также стоит обратить внимание на то, что выпрямительные схемы отличаются по количеству фаз:

  1. Однофазные. Широко применяются для бытовых электроприборов. Существуют диоды автомобильные и для электродуговой сварки.
  2. Многофазные. Незаменимы для промышленного оборудования, общественного и специального транспорта.


Диод Шоттки

Отдельную позицию занимает диод Шоттки. Изобрели его в связи с растущими потребностями в развивающейся отрасли радиоэлектроники. Основное отличие его от остальных диодов заключается в том, что в его конструкцию заложен металл-полупроводник как альтернатива p-n переходу. Соответственно, диод Шоттки обладает своими, уникальными свойствами, которыми не могут похвастаться кремниевые выпрямительные диоды. Некоторые из них:

  • оперативная возобновляемость заряда благодаря его низкому значению;
  • минимальное падение напряжения на переходе при прямом включении;
  • ток утечки обладает большим значением.

При изготовлении диода Шоттки применяют такие материалы, как кремний и арсенид галлия, но иногда применяется и германий. Свойства материалов немного отличаются, но в любом случае, максимально допустимое обратное напряжение для выпрямителя Шоттки составляет не более 1200 V.


В противовес всем достоинствам конструкция данного вида имеет и минусы. Например, в сборке моста устройство категорически не воспринимает превышение обратного тока. Нарушение условия приводит к поломке выпрямителя. Также малое падение напряжения происходит при невысоком напряжении около 60-70 V. Если значение превышает этот показатель, то устройство превращается в обыкновенный выпрямитель.

Стоит отметить, что достоинства диода мощного выпрямительного Шоттки значительно превышают недостатки.

Диод-стабилитрон

Для стабилизации напряжения используют специальное приспособление, способное работать в режиме пробоя, – стабилитрон, зарубежное название которого «диод Зенера». Выполняет свою функцию устройство, работая в режиме пробоя при напряжении обратного смещения. Возрастание силы тока происходит в момент пробоя, одновременно опускается до минимума дифференциальное значение, вследствие чего напряжение стабильное и охватывает достаточно серьезный диапазон обратных токов.

Практическое использование выпрямительного диода

В связи с неудержимым развитием научно-технического прогресса применение выпрямителей затронуло все сферы жизнедеятельности человека. Диоды силовые выпрямительные эксплуатируются в таких узлах и механизмах:

  • в блоках питания главных двигателей транспортных средств (наземных, воздушных и водных), промышленных станков и техники, буровых установок;
  • в комплектации диодного моста для сварочных аппаратов;
  • в выпрямительных установках для гальванических ванн, используемых для получения цветных металлов или нанесения защитного покрытия на деталь или изделие;
  • в выпрямительных установках для очистки воды и воздуха, фильтрах различного рода;
  • для передачи электроэнергии на дальние расстояния посредством высоковольтной линии электропередач.

В повседневной жизни выпрямители используют в различных транзисторных схемах. Применяют в основном маломощные устройства как в виде однополупериодного выпрямителя, так и виде диодного моста. Например, диоды выпрямительного блока генератора хорошо известны автолюбителям.

Полупроводниковый диод - это полупроводниковый прибор с одним p-n переходом и с двумя электродами. Принцип действия полупроводникового диода основан на явлении p-n перехода, поэтому для дальнейшего изучения любых полупроводниковых приборов нужно знать как работает.

Выпрямительный диод (также называют вентилем) - это разновидность полупроводникового диода который служит для преобразования переменного тока в постоянный.

У диода есть два вывода (электрода) анод и катод. Анод присоединён к p слою, катод к n слою. Когда на анод подаётся плюс, а на анод минус (прямое включение диода) диод пропускает ток. Если на анод подать минус, а на катод плюс (обратное включение диода) тока через диода не будет это видно из вольт амперной характеристики диода. Поэтому когда на вход выпрямительного диода поступает переменное напряжение через него проходит только одна полуволна.


Вольт-амперная характеристика (ВАХ) диода.

Вольт-амперная характеристика диода показана на рис. I. 2. В первом квадранте показана прямая ветвь характеристики, описывающая состояние высокой проводимости диода при приложенном к нему прямом напряжении, которая линеаризуется кусочно-линей­ной функцией

u = U 0 +R Д i

где: u - напряжение на вентиле при прохождении тока i; U 0 - пороговое напряжение; R д - динамическое сопротивление.

В третьем квадранте находится обратная ветвь вольт-амперной характеристики , описывающая состояние низкой проводимости при проложенном к диоду обратном напряжении . В состоянии низкой проводимости ток через полупроводниковую структуру практически не протекает. Однако это справедливо только до определённого значения обратного напряжения. При обратном напряжении, когда напряженность электрического поля в p-n переходе достигает порядка 10 s В/см, это поле может сообщить подвижным носителям заряда - электронам и дыркам, постоянно возникающим во всем объеме полупроводниковой структуры в результате термической генерации,- кинетическую энергию, достаточную для ионизации нейтральных атомов кремния. Образовавшиеся дырки и электроны проводимости, в свою очередь, ускоряются электрическим полем p-n перехода и также ионизируют нейтральные атомы кремния. При этом происходит лавинообразное нарастание обратного тока, .т. е. лавинный пробои.

Напряжение, при котором происходит резкое повышение обратного тока, называется напряжением пробоя U 3 .

Полупроводниковым диодом называют электропреобразовательный полупроводниковый прибор с одним выпрямляющим электрическим переходом, имеющим два вывода. В качестве выпрямляющего электрического перехода используется электронно-дырочный (р-n) переход (П), разделяющий р- и n-области кристалла полупроводника (рис. 10.2).

К р- и n-области кристалла привариваются или припаиваются металлические выводы, и вся система заключается в металлический, металлокерамический, стеклянный или пластмассовый корпус.

По конструктивному выполнению различают точечные и плоскостные диоды. Широкое применение диоды получили в источниках вторичного электропитания (выпрямителях).

Одна из полупроводниковых областей кристалла, имеющая более высокую концентрацию примесей (а следовательно, и основных носителей заряда), называется эмиттером, а вторая, с меньшей концентрацией - базой. Если эмиттером является p-область, для которой основными носителями заряда служат дырки p p , а базой n-область (основные носители заряда - электроны n n), то выполняется условие p p ≥n n .

p p - обозначение дырок в p-области; тогда обозначение дырок в n-области, для которой они являются неосновными носителями зарядов, будет соответственно p n .

Принцип работы. При отсутствии внешнего напряжения, приложенного к выводам диода, в результате встречной диффузии дырок (из р- в n-область) и электронов (из n- в р-область) в объеме полупроводникового кристалла, расположенного вблизи границы раздела двух областей с различной проводимостью, окажутся некомпенсированными заряды неподвижных ионов примесей (акцепторов для р-области и доноров для n-области), которые по обе стороны раздела полупроводникового кристалла создадут область объемного заряда (рис. 10.2). Для сохранения электрической нейтральности полупроводниковой структуры количество диффундируемых через р-n-переход основных носителей заряда из одной области должно равняться количеству диффундируемых основных носителей заряда из другой области. С учетом того, что концентрация электронов n n в базе значительно меньше концентрации дырок p p в эмиттере, область объемного заряда со стороны базы будет больше, чем со стороны эмиттера, как это показано на рис. 10.2. Образованный в результате встречной диффузии объемный заряд создает напряженность E зар электрического поля, препятствующего дальнейшей встречной диффузии основных носителей зарядов.

Рис. 10.2. Схема включения полупроводникового диода и пространственное распределение объемных зарядов р-n-перехода в отсутствие внешнего напряжения

Диффузия практически прекращается, когда энергия носителей заряд недостаточна, чтобы преодолеть созданный потенциальный барьер .

Если к выводам диода приложить прямое напряжение, как это показано на рис. 10.2, то создаваемая им напряженность Е электрического поля будет противоположна направлению напряженности E зар объемного заряда и в область базы (по мере возрастания напряжения U) будет вводиться (инжектировать) все большее количество дырок, являющихся не основными для n-области базы носителями заряда, которые и образуют прямой ток диода I. Встречной инжекцией n n в область эмиттера можно пренебречь, учитывая, что p p ≥n n .

Если к выводам диода приложить обратное напряжение (-U), то создаваемая им напряженность (-Е) электрического поля, совпадая по направлению с напряженностью E зар объемного заряда, повышает потенциальный барьер и препятствует переходу основных носителей заряда в соседнюю область. Однако суммарная напряжеяностъ электрических полей способствует извлечению (экстракции) неосновных носителей заряда: n p - из р- в n-область и p n - из n- в р-область, которые и образуют обратный ток p-n-перехода. Количество неосновных носителей заряда значительно изменяется при изменении температуры, возрастая с ее повышением. Поэтому обратный ток, образованный за счет неосновных носителей, называют тепловым током (I 0).

Вольт-амперная характеристика (ВАХ) диода имеет вид, приведенный на рис. 10.3 (сплошная линия), и описывается выражением

(10.1)

где U Д - напряжение на р-n-переходе;

k - постоянная Больцмана; T - абсолютная температура; q - заряд электрона. Выражение (10.1) соответствует ВАХ идеального р-n-перехода и не отражает некоторых свойств реального диода.

При определенном значении напряжения U обр начинается лавинообразный процесс нарастания тока I обр, соответствующий электрическому пробою р-n-перехода (отрезок АВ на рис. 10.3). Если в этот момент ток не ограничить, электрический пробой переходит в тепловой (участок ВАХ после точки В). Такая последовательность лавинообразного процесса нарастания тока I обр характерна для кремниевых диодов. Для германиевых диодов с увеличением обратного напряжения тепловой пробой р-n-перехода наступает практически одновременно с началом лавинообразного процесса нарастания тока I обр. Электрический пробой обратим, т. е. после уменьшения напряжения U обр работа диода соответствует пологому участку обратной ветви ВАХ. Тепловой пробой необратим, так как разрушает р-n-переход.

Прямой ток диода также зависит от температуры окружающей среды, возрастая с ее повышением, хотя и в значительно меньшей степени, чем обратный ток. Характер изменения прямой ветви ВАХ при изменении температуры показан на рис. 10.3. Для оценки температурной зависимости прямой ветви ВАХ диода служит температурный коэффициент напряжения (ТКН), °K -1 .

Этот коэффициент показывает относительное изменение прямого напряжения за счет изменения температуры на 1 ̊К при некотором значении прямого тока.

Рис. 10.3. Вольт-амперные характеристики полупроводникового диода

Сопротивления и емкости диода. Полупроводниковый диод характеризуется статическим и дифференциальным (динамическим) сопротивлениями, легко определяемыми по ВАХ. Дифференциальное сопротивление численно равно отношению бесконечно малого приращения напряжения к соответствующему приращению тока в заданном режиме работы диода и может быть определено графически как тангенс угла наклона касательной в рассматриваемой рабочей точке Е к оси абсцисс (см. рис. 10.3):

(10.2)

где ∆U и ∆I- конечные приращения напряжения и тока вблизи рабочей точки Е; mI и mU - масштабы осей тока и напряжения.

Часто представляют интерес не приращения напряжения и тока в окрестности некоторой заданной точки, а сами напряжение и ток в данном элементе. При этом совершенно безразлично, какова характеристика диода вблизи выбранной рабочей точки. В этом случае удобно пользоваться статическим сопротивлением, которое равно отношению напряжения на элементе U E к протекающему через него току I E (рис. 10.3). Как видно из рисунка, это сопротивление равно тангенсу угла наклона прямой, проведенной из начала координат через заданную рабочую точку ВАХ, к оси абсцисс:

В зависимости от того, на каком участке ВАХ расположена заданная рабочая точка, значение R ст, может быть меньше или больше значения R диф или равно ему. Однако R ст всегда положительно, в то время как R диф может быть и отрицательным. У элементов, имеющих линейные ВАХ, статическое и дифференциальное сопротивления равны.

При работе на высоких частотах и в импульсных режимах начинает играть роль емкость диода С Д, измеряемая между выводами диода при заданных значениях напряжения и частоты. Эта емкость включает диффузионную емкость С диф, зарядную (барьерную) емкость С зар и емкость С к корпуса диода:

Диффузионная емкость возникает при прямом напряжении диода в приконтактном слое р-n-перехода за счет изменения количества диффундируемых дырок и электронов при изменении прямого напряжения. Зарядная емкость возникает при обратном напряжении и обусловлена изменением объемного заряда.

Значение емкости С Д определяется режимом работы диода. При прямом напряжении

при обратном напряжении

Классификация диодов представлена в табл. 10.1.

Таблица 10.1 Классификация диодов

Рассмотрим некоторые из них, наиболее широко применяемые в практике.

Выпрямительный диод , условное графическое обозначение которого приведено на рис. 10.4, 1, использует вентильные свойства р-n-перехода и применяется в выпрямителях переменного тока. В качестве исходного материала при изготовлении выпрямительных диодов используют германий и кремний.

Выпрямительный диод представляет собой электронный ключ, управляемый приложенным к нему напряжением. При прямом напряжении ключ замкнут, при обратном - разомкнут. Однако в обоих случаях этот ключ не является идеальным. При подаче прямого напряжения U пр ключ обладает небольшим дифференциальным сопротивлением. Поэтому за счет падения напряжения U пр на открытом диоде выпрямленное напряжение, снимаемое с нагрузочного устройства, несколько ниже входного напряжения (U пр не превышает у германневых диодов 0,5 В, а у кремниевых 1,5 В; часто за величину U пр для кремниевых диодов принимается напряжение 0,7 В).

Основными параметрами выпрямительных диодов являются:

Iпр ср max - максимальное (за период входного напряжения) значение среднего прямого тока диода;

U обр.доп - допустимое наибольшее значение постоянного обратного напряжения диода;

f max - максимально допустимая частота входного напряжения;

U пр - значение прямого падения напряжения на диоде при заданном прямом токе.

Выпрямительные диоды классифируют также по мощности и частоте.

По мощности: маломощные I пр ср max <0,3 A; средней мощности 0,3 A10 A.

По частоте: низкочастотные f max <1000 Гц; высокочастотные f max >1000 Гц.

В качестве выпрямительных применяются также диоды, выполненные на выпрямляющем переходе металл-полупроводник (диоды Шотки). Их отличает меньшее, чем у диодов с р-n-переходом, напряжение U пр и более высокие частотные характеристики.

Импульсный диод - полупроводниковый диод, имеющий малую длительность переходных процессов и использующий, так же как и выпрямительный диод, при своей работе прямую и обратную ветви ВАХ.

Длительность переходных продресов в диоде (рис. 10.4) обусловлена тем, чтo изменeние направления и значения тока через него при изменении подводимого к нему напряжения не может происходить мгновенно в связи с перезарядом емкости выпрямляющего перехода и инерционными процессами рассасывания инжектированных в базу неосновных носителей заряда. Последнее явление определяет быстродействие диодов и характеризуется специальным параметром - временем восстановления t вос его обратного сопротивления. Время восстановления равно интервалу времени между моментом переключения напряжения на диоде с прямого на обратное и моментом, когда обратный ток, который в момент переключения напряжения paвен прямому току, достигнет своего минимального значения.

Рис. 10.4. Переходные процессы в полупроводниковом диоде

Поэтому кроме параметров I пр ср max , U обр, U пр характеризующих выпрямительные свойства, для импульсных диодов вводится параметр t вос, характеризующий быстродействие.

Для повышения быстродействия (уменьшения t вос) импульсные диоды изготовляют в виде точечных структур, что обеспечивает минимальную площадь, р-n-перехода, а следовательно, и минимальное значение зарядной емкости C зар. Одновременно толщину базы делают минимально возможной для достижения минимального времени восстановления диодов.

В качестве импульсных находят применение и диоды Шотки.

Сверхвысокочастотный диод (СВЧ-диод) - полупроводниковый диод, предназначенный для преобразования и обработки высокочастотного сигнала (до десятков и сотен ГГц). Сверхвысокочастотные диоды широко применяются при генерации и усилении электромагнитных колебаний СВЧ-диапазона, умножении частоты, модуляции, регулировании и ограничении сигналов и т. д. Типичными представителями данной группы диодов являются смесительные (получение сигнала суммы или разности двух частот), детекторные (выделение постоянной составляющей СВЧ-сигнала) и переключательные (управление уровнем мощности сверхвысокочастотного сигнала) диоды. Условное графическое обозначение импульсных и СВЧ-диодов аналогично обозначению выпрямительных диодов (рис. 10.0, 1).

Стабилитрон и стабистор применяются в нелинейных цепях постоянного тока для стабилизации напряжения. Отличие стабилитрона от стабистора заключается в используемой ветви ВАХ для стабилизации напряжения. Как видно из рис. 10.3, ВАХ диода имеет участки АВ и CD, на которых значительному изменению тока соответствует незначительное изменение напряжения при сравнительно линейной их зависимости. Для стабилизации высокого напряжения (>3 В) используют обратную ветвь (участок АВ) ВАХ. Применяемые для этой цели диоды называют стабилитронами. Для стабилизации небольших значений напряжений (< 1 В -например, в интегральных схемах) используют прямую ветвь (участок CD) ВАХ, а применяемые в этом случае диоды называют стабисторами. Условное обозначение стабилитрона и стабистора показано на рис. 10.0, 2.

Стабилитроны и стабисторы изготовляют, как правило, из кремния. При использовании высоколегированного кремния (высокая концентрация примесей, а следовательно, и свободных носителей заряда) напряжение стабилизации понижается, а с уменьшением степени легирования кремния - повышается. Соответственно различают низко- и высоковольтные стабилитроны с напряжением стабилизации от 3 до 400 В.

К основным параметрам стабилитрона относятся:

U ст - напряжение стабилизации при заданном токе;

R диф - дифференциальное сопротивление при заданном токе;

I ст min - минимально допустимый ток стабилизации;

I ст max - максимально допустимый ток стабилизации;

P max - максимально допустимая рассеиваемая мощность;

где ∆U ст - отклонение напряжения U ст от номинального значения при изменении температуры в интервале ∆T.

В схемах двуполярной стабилизации напряжения применяется симметричный стабилитрон, условное графическое обозначение которого показано на рис. 10.0, 3.

Варикап - полупроводниковый диод, действие которого основано на использовании зависимости зарядной емкости C зар от значения приложенного напряжения. Это позволяет применять варикап в качестве элемента с электрически управляемой емкостью.

Основной характеристикой варикапа служит вольт-фарадная характеристика (рис. 10.5) - зависимость емкости варикапа C В, состоящей из зарядной емкости и емкости корпуса прибора, от значения приложенного обратного напряжения. В выпускаемых промышленностью варикапах значение емкости C В может изменяться от единиц до сотен пикофарад.

Рис. 10.5. Вольт-фарадная характеристика варикапа

Основными параметрами варикапа являются:

C В - емкость, измеренная между выводами варикапа при заданном обратном напряжении;

K С - коэффициент перекрытия по емкости, используемый для оценки зависимости C В =f(U обр)и равный отношению емкостей варикапа при двух заданных значениях обратного напряжения (K C =2...20).

Зависимость параметров варикапа от температуры характеризуется температурным коэффициентом емкости

где ∆C В /C В - относительное изменение емкости варикапа при изменении температуры ∆T окружающей среды.

Условное графическое обозначение варикапа приведено на 10.0, 4.

Излучающий диод - полупроводниковый диод, излучающий из области р-n-перехода кванты энергии. Излучение испускается через прозрачную стеклянную пластину, размещенную в корпусе диода.

По характеристике излучения излучающие диоды делятся на две группы: диоды с излучением в видимой области спектра, получившие название светодиоды; диоды с излучением в инфракрасной области спектра, получившие, в свою очередь, название ИК-диоды. Принцип действия обеих групп диодов одинаков и базируется на самопроизвольной рекомбинации носителей заряда при прямом токе через выпрямляющий электрический переход. Из курса физики известно, что рекомбинация носителей заряда сопровождается освобождением кванта энергии. Спектр частот последней определяется типом исходного полупроводникового материала.

Основными материалами для изготовления светодиодов служат фосфид галлия, арсенид-фосфид галлия, карбид кремния. Большую часть энергии, выделяемой в этих материалах при рекомбинации носителей заряда, составляет тепловая энергия. На долю энергии видимого излучения в лучшем случае приходится 10...20%. Поэтому кпд светодиодов невелик.

Исходными материалами для изготовления ИК-диодов являются арсенид и фосфид галлия. Полная мощность излучения этой группы диодов лежит в пределах от единиц до сотен милливатт при напряжении на диоде 1,2...3 В и прямом токе от десятков до сотен миллиампер.

Условное графическое обозначение излучающих диодов показано на рис. 10.0, 5.

Светодиоды применяют в качестве световых индикаторов, а ИК-диоды - в качестве источников излучения в оптоэлектронных устройствах.

Для контроля направления электрического тока необходимо применять разные радио и электро детали. В частности, современная электроника использует с такой целью полупроводниковый диод, его применение обеспечивает ровный ток.

Устройство

Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц. Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами. Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.

Фото – полупроводниковый диод

Для создания полупроводниковых диодов используются германий и селен, как и более 100 лет назад. Их структура позволяет использовать детали для улучшения электронных схем, преобразования переменного и постоянного тока в однонаправленный пульсирующий и для совершенствования разных устройств. На схеме он выглядит так:


Фото – обозначение диода

Существуют разные виды полупроводниковых диодов, их классификация зависит от материала, принципа работы и области использования: стабилитроны, импульсные, сплавные, точечные, варикапы, лазер и прочие типы. Довольно часто используются аналоги мостов – это плоскостной и поликристаллический выпрямители. Их сообщение также производится при помощи двух контактов.

Основные преимущества полупроводникового диода:

  1. Полная взаимозаменяемость;
  2. Отличные пропускные параметры;
  3. Доступность. Их можно купить в любом магазине электро-товаров или снять бесплатно со старых схем. Цена начинается от 50 рублей. В наших магазинах представлены как отечественные марки (КД102, КД103, и т. д.), так и зарубежные.

Маркировка

Маркировка полупроводникового диода представляет собой аббревиатуру от основных параметров устройства. Например, КД196В – кремниевый диод с напряжением пробоя до 0,3 В, напряжением 9,6, модель третьей разработки.

Исходя из этого:

  1. Первая буква определяет материал, из которого изготовлен прибор;
  2. Наименование устройства;
  3. Цифра, определяющая назначение;
  4. Напряжение прибора;
  5. Число, которое определяет прочие параметры (зависит от типа детали).

Видео: применение диодов

Принцип работы

Полупроводниковые или выпрямительные диоды имеют довольно простой принцип работы. Как мы уже говорили, диод изготовлен из кремния таким образом, что один его конец p-типа, а другой конец типа n. Это означает, что оба контакта имеют различные характеристики. На одном наблюдается избыток электронов, в то время как другой имеет избыток отверстий. Естественно, в устройстве есть участок, в котором все электроны заполняют определенные пробелы. Это означает, что внешние заряды отсутствуют. В связи с тем, что эта область обедняется носителями заряда и известна как объединяющий участок.


Фото – принцип работы

Несмотря на то, что объединяющий участок очень мал, (часто его размер составляет несколько тысячных долей миллиметра), ток не может протекать в нем в обычном режиме. Если напряжение подается так, что площадь типа p становится положительной, а тип n, соответственно, отрицательной, отверстия переходят к отрицательному полюсу и помогают электронам перейти через объединяющий участок. Точно так же электроны движутся к положительному контакту и как бы обходят объединительный. Несмотря на то, что все частицы движутся с разным зарядом в разном направлении, в итоге они образуют однонаправленный ток, что помогает выпрямить сигнал и предупредить скачки напряжения на контактах диода.

Если напряжение прикладывается к полупроводниковому диоду в противоположном направлении, ток не будет проходить по нему. Причина заключается в том, что отверстия привлекаются отрицательным потенциалом, который находится в области р-типа. Аналогично электроны притягиваются к положительному потенциалу, который применяется к области n-типа. Это заставляет объединяющий участок увеличиваться в размере, из-за чего поток направленных частиц становится невозможным.


Фото – характеристики полупроводников

ВАХ-характеристики

Вольт амперная характеристика полупроводникового диода зависит от материала, из которого он изготовлен и некоторых параметров. Например, идеальный полупроводниковый выпрямитель или диод имеет следующие параметры:

  1. Сопротивление при прямом подключении – 0 Ом;
  2. Тепловой потенциал – VG = +-0,1 В.;
  3. На прямом участке RD > rD, т. е. прямое сопротивление больше, чем дифференциальное.

Если все параметры соответствуют, то получается такой график:


Фото – ВАХ идеального диода

Такой диод использует цифровая электротехника, лазерная индустрия, также его применяют при разработке медицинского оборудования. Он необходим при высоких требованиях к логическим функциям. Примеры – лазерный диод, фотодиод.

На практике, эти параметры очень отличаются от реальных. Многие приборы просто не способны работать с такой высокой точностью, либо такие требования не нужны. Эквивалентная схема характеристики реального полупроводника демонстрирует, что у него есть серьезные недостатки:


Фото – ВАХ в реальном полупроводниковом диоде

Данная ВАХ полупроводникового диода говорит о том, что во время прямого включения, контакты должны достигнуть максимального напряжения. Тогда полупроводник откроется для пропуска электронных заряженных частиц. Эти свойства также демонстрируют, что ток будет протекать нормально и без перебоев. Но до момента достижения соответствия всех параметров, диод не проводит ток. При этом у кремниевого выпрямителя вольтаж варьируется в пределах 0,7, а у германиевого – 0,3 Вольт.

Работа прибора очень зависит от уровня максимального прямого тока, который может пройти через диод. На схеме он определяется ID_MAX. Прибора так устроен, что во время включения прямым путем, он может выдержать только электрический ток ограниченной силы. В противном случае, выпрямитель перегреется и перегорит, как самый обычный светодиод. Для контроля температуры используются разные виды устройств. Естественно, некоторые из них влияют на проводимость, но зато продлевают работоспособность диода.

Еще одним недостатком является то, что при пропуске переменного тока, диод не является идеальным изолирующим устройством. Он работает только в одном направлении, но всегда нужно учитывать ток утечки. Его формула зависит от остальных параметров используемого диода. Чаще всего схемы его обозначают, как I OP . Исследование независимых экспертов установило, что германиевые пропускают до 200 µА, а кремниевые до 30 µА. При этом многие импортные модели ограничиваются утечкой в 0.5 µА.


Фото – отечественные диоды

Все разновидности диодов поддаются напряжению пробой. Это свойство сети, которое характеризуется ограниченным напряжением. Любой стабилизирующий прибор должен его выдерживать (стабилитрон, транзистор, тиристор, диодный мост и конденсатор). Когда внешняя разница потенциалов контактов выпрямительного полупроводникового диода значительно выше ограниченного напряжения, то диод становится проводником, в одну секунду снижая сопротивление до минимума. Назначение устройства не позволяет ему делать такие резкие скачки, иначе это исказить ВАХ.

На рис. 2.9 представлена вольт-амперная характеристика кремниевого выпрямительного диода при различной температуре окружающей среды.

Максимально допустимые прямые токи кремниевых плоскостных диодов различных типов составляют 0,1…1600 А. Падение напряжения на диодах при этих токах обычно не превышает 1,5 В. С увеличением температуры прямое падение напряжения уменьшается, что связано с уменьшением высоты потенциального барьера

p–n -перехода и с перераспределением носителей заряда по энергетическим уровням.

Обратная ветвь вольт-амперной характеристики кремниевых диодов не имеет участка насыщения обратного тока, т.к. обратный ток в кремниевых диодах вызван процессом генерации носителей заряда в p–n -переходе. Пробой кремниевых диодов имеет лавинный характер. Поэтому пробивное напряжение с увеличением температуры увеличивается. Для некоторых типов кремниевых диодов при комнатной температуре пробивное напряжение может составлять 1500…2000 В.

Диапазон рабочих температур для кремниевых выпрямительных диодов ограничивается значениями – 60…+125 C . Нижний предел рабочих температур обусловлен различием температурных коэффициентов линейного расширения различных элементов конструкции диода: при низких температурах возникают механические напряжения, которые могут привести к растрескиванию кристалла. С уменьшением температуры также необходимо учитывать увеличение прямого падения напряжения на диоде, происходящее из-за увеличения высоты потенциального барьера на p–n -переходе.

Верхний предел диапазона рабочих температур выпрямительных диодов определяется резким ухудшением выпрямления в связи с ростом обратного тока – сказывается тепловая генерация носителей заряда в результате ионизации атомов полупроводника. Исходя из этого верхний предел диапазона рабочих температур кремниевых выпрямительных диодов, как и большинства других полупроводниковых приборов, связан с шириной запрещенной зоны исходного полупроводникового материала.

На рис. 2.10 представлена вольт-амперная характеристика германиевого выпрямительного диода при различной температуре окружающей среды.

Прямое напряжение на германиевом диоде при максимально допустимом прямом токе практически в два раза меньше, чем на кремниевом диоде. Это связано с меньшей высотой потенциального барьера германиевого перехода, что является достоинством, но, к сожалению, единственным.

Для германиевых диодов характерно существование обратного тока насыщения, что связано с механизмом образования обратного тока – процессом экстракции неосновных носителей заряда.

Плотность обратного тока в германиевых диодах значительно больше, т.к. при прочих равных условиях концентрация неосновных носителей заряда в германии на несколько порядков больше, чем в кремнии. Это приводит к тому, что для германиевых диодов пробой имеет тепловой характер. Поэтому пробивное напряжение с увеличением температуры уменьшается, а значения этого напряжения меньше пробивных напряжений кремниевых диодов.



Верхний предел диапазона рабочих температур германиевых диодов составляет около 75 C .

Существенной особенностью германиевых диодов и их недостатком является то, что они плохо выдерживают даже очень кратковременные импульсные перегрузки при обратном смещении p–n -перехода. Определяется это механизмом пробоя – тепловым пробоем, происходящим при шнуровании тока с выделением большой удельной мощности в месте пробоя.

Перечисленные особенности кремниевых и германиевых выпрямительных диодов связаны с различием ширины запрещенной зоны исходных полупроводников. Из такого сопоставления видно, что выпрямительные диоды с большей шириной запрещенной зоны обладают существенными преимуществами в свойствах и параметрах. Одним из таких представителей является арсенид галлия.

В настоящее время, выпускаемые промышленностью арсенид-галлиевые выпрямительные диоды еще далеки от оптимально возможных. К примеру, диод типа АД112А имеет максимально допустимый прямой ток 300 мА при прямом напряжении 3 В. Большая величина прямого напряжения является недостатком всех выпрямительных диодов, p–n -переходы которых сформированы в материале с широкой запрещенной зоной. Максимально допустимое обратное напряжение для данного диода –50 В. Это объясняется, вероятнее всего, тем, что в области p–n -перехода имеется большая концентрация дефектов из-за несовершенства технологии.

Достоинствами арсенид-галлиевых выпрямительных диодов являются большой диапазон рабочих температур и лучшие частотные свойства. Верхний предел рабочих температур для диодов АД112А составляет 250 С. Арсенид-галлиевые диоды АД110А могут работать в выпрямителях малой мощности до частоты 1 МГц, что обеспечивается малым временем жизни носителей заряда в этом материале.

Выводы:

1. С повышением температуры обратный ток у германиевых выпрямительных диодов резко возрастает за счет роста теплового тока.

2. У кремниевых диодов тепловой ток очень мал, и поэтому они могут работать при более высоких температурах и с меньшим обратным током, чем германиевые диоды.

3. Кремниевые диоды могут работать при значительно больших обратных напряжениях, чем германиевые диоды. Максимально допустимое постоянное обратное напряжение у кремниевых диодов увеличивается с повышением температуры до максимального значения, в то время как у германиевых диодов резко падает.

4. Вследствие указанных преимуществ в настоящее время выпрямительные диоды в основном изготавливают на основе кремния.