Ультразвуковой датчик расстояния Ардуино HC-SR04. Как сделать ультразвуковой датчик расстояния на Ардуино: дальномер своими руками Ультразвуковой датчик расстояния своими руками

Дальномер — это устройство для измерения расстояния до некоторого предмета. Дальномер помогает роботам в разных ситуациях. Простой колесный робот может использовать этот прибор для обнаружения препятствий. Летающий дрон использует дальномер для баражирования над землей на заданной высоте. С помощью дальномера можно даже построить карту помещения, применив специальный алгоритм SLAM.

1. Принцип действия

На этот раз мы разберем работу одного из самых популярных датчиков — ультразвукового (УЗ) дальномера. Существует много разных модификаций подобных устройств, но все они работают по принципу измерения времени прохождения отраженного звука. То есть датчик отправляет звуковой сигнал в заданном направлении, затем ловит отраженное эхо и вычисляет время полета звука от датчика до препятствия и обратно. Из школьного курса физики мы знаем, что скорость звука в некоторой среде величина постоянная, но зависящая от плотности среды. Зная скорость звука в воздухе и время полета звука до цели, мы можем рассчитать пройденное звуком расстояние по формуле: s = v*t где v — скорость звука в м/с, а t — время в секундах. Скорость звука в воздухе, кстати, равна 340.29 м/с. Чтобы справиться со своей задачей, дальномер имеет две важные конструктивные особенности. Во-первых, чтобы звук хорошо отражался от препятствий, датчик испускает ультразвук с частотой 40 кГц. Для этого в датчике имеется пьезокерамический излучатель, который способен генерировать звук такой высокой частоты. Во-вторых, излучатель устроен таким образом, что звук распространяется не во все стороны (как это бывает у обычных динамиков), а в узком направлении. На рисунке представлена диаграмма направленности типичного УЗ дальномера. Как видно на диаграмме, угол обзора самого простого УЗ дальномера составляет примерно 50-60 градусов. Для типичного варианта использования, когда датчик детектирует препятствия перед собой, такой угол обзора вполне пригоден. Ультразвук сможет обнаружить даже ножку стула, тогда как лазерный дальномер, к примеру, может её не заметить. Если же мы решим сканировать окружающее пространство, вращая дальномер по кругу как радар, УЗ дальномер даст нам очень неточную и шумную картину. Для таких целей лучше использовать как раз лазерный дальномер. Также следует отметить два серьезных недостатка УЗ дальномера. Первый заключается в том, что поверхности имеющие пористую структуру хорошо поглощают ультразвук, и датчик не может измерить расстояние до них. Например, если мы задумаем измерить расстояние от мультикоптера до поверхности поля с высокой травой, то скорее всего получим очень нечеткие данные. Такие же проблемы нас ждут при измерении дистанции до стены покрытой поролоном. Второй недостаток связан со скоростью звуковой волны. Эта скорость недостаточно высока, чтобы сделать процесс измерения более частым. Допустим, перед роботом есть препятствие на удалении 4 метра. Чтобы звук слетал туда и обратно, потребуется целых 24 мс. Следует 7 раз отмерить, прежде чем ставить УЗ дальномер на летающих роботов.

2. Ультразвуковой дальномер HC-SR04

В этом уроке мы будем работать с датчиком HC-SR04 и контроллером Ардуино Уно. Этот популярный дальномер умеет измерять расстояние от 1-2 см до 4-6 метров. При этом, точность измерения составляет 0.5 — 1 см. Встречаются разные версии одного и того же HC-SR04. Одни работают лучше, другие хуже. Отличить их можно по рисунку платы на обратной стороне. Версия, которая работает хорошо выглядит так:

А вот версия, которая может давать сбои:

3. Подключение HC-SR04

Датчик HC-SR04 имеет четыре вывода. Кроме земли (Gnd) и питания (Vcc) еще есть Trig и Echo. Оба этих вывода цифровые, так что подключаем из к любым выводам Ардуино Уно:
HC-SR04 GND VCC Trig Echo
Arduino Uno GND +5V 3 2
Принципиальная схема устройства Внешний вид макета

4. Программа

Итак, попробуем приказать датчику отправить зондирующий ультразвуковой импульс, а затем зафиксируем его возвращение. Посмотрим как выглядит временная диаграмма работы HC-SR04.
На диаграмме видно, что для начала измерения нам необходимо сгенерировать на выводе Trig положительный импульс длиной 10 мкс. Вслед за этим, датчик выпустит серию из 8 импульсов и поднимет уровень на выводе Echo , перейдя при этом в режим ожидания отраженного сигнала. Как только дальномер почувствует, что звук вернулся, он завершит положительный импульс на Echo . Получается, что нам нужно сделать всего две вещи: создать импульс на Trig для начала измерения, и замерить длину импульса на Echo, чтобы потом вычислить дистанцию по нехитрой формуле. Делаем. int echoPin = 2; int trigPin = 3; void setup() { Serial.begin (9600); pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); } void loop() { int duration, cm; digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); cm = duration / 58; Serial.print(cm); Serial.println(" cm"); delay(100); } Функция pulseIn замеряет длину положительного импульса на ноге echoPin в микросекундах. В программе мы записываем время полета звука в переменную duration. Как мы уже выяснили ранее, нам потребуется умножить время на скорость звука: s = duration * v = duration * 340 м/с Переводим скорость звука из м/с в см/мкс: s = duration * 0.034 м/мкс Для удобства преобразуем десятичную дробь в обыкновенную: s = duration * 1/29 = duration / 29 А теперь вспомним, что звук прошел два искомых расстояния: до цели и обратно. Поделим всё на 2: s = duration / 58 Теперь мы знаем откуда взялось число 58 в программе! Загружаем программу на Ардуино Уно и открываем монитор последовательного порта. Попробуем теперь наводить датчик на разные предметы и смотреть в мониторе рассчитанное расстояние.

Задания

Теперь, когда мы умеем вычислять расстояние с помощью дальномера, сделаем несколько полезных устройств.
  1. Строительный дальномер. Программа каждые 100мс измеряет расстояние с помощью дальномера и выводит результат на символьный ЖК дисплей. Для удобства полученное устройство можно поместить в небольшой корпус и запитать от батареек.
  2. Ультразвуковая трость. Напишем программу, которая будет «пищать» зуммером с различной частотой, в зависимости от измеренного расстояния. Например, если расстояние до препятствия более трех метров — зуммер издает звук раз в пол секунды. При расстоянии 1 метр — раз в 100мс. Менее 10см — пищит постоянно.

Заключение

Ультразвуковой дальномер — простой в использовании, дешевый и точный датчик, который отлично выполняет свою функцию на тысячах роботов. Как мы выяснили из урока, у датчика есть недостатки, которые следует учитывать при постройке робота. Хорошим решением может стать совместное использование ультразвукового дальномера в паре с лазерным. В таком случае, они будут нивелировать недостатки друг друга.

Bruno Gavand

Проект, в котором рассматривается простое и дешевое решение ультразвукового сенсора для измерения расстояния, выполнен на базе микроконтроллера PIC16F877A компании , но пользователями исходный код может быть адаптирован под другие микроконтроллеры. Сенсор может быть встроен в пользовательские разработки и устройства: детекторы присутствия, роботы, автомобильные системы парковки, устройства измерения расстояния и пр.

Отличительные особенности:

  • небольшое количество внешних компонентов;
  • размер кода 200 Байт;
  • диапазон рабочих расстояний: 30 см - 200 см;
  • точность измерений ±1 см;
  • индикация при выходе за пределы измерений.

Как известно, скорость звука в воздухе равна около 340 м/с. Таким образом, принцип ультразвукового сенсора состоит в посылке ультразвуковой импульса частотой 40 кГц и отслеживание отраженного сигнала (эхо). Конечно, звука вы не услышите, но ультразвуковой датчик способен определить отраженный импульс. Следовательно, зная время прохождения импульса и отраженного ультразвукового сигнала, мы сможем получить расстояние. Разделив на два, мы получим расстояние от ультразвукового датчика до первого препятствия, от которого был отражен сигнал.

В устройстве применен пьезокерамический ультразвуковой излучатель MA40B8S и пьезокерамический ультразвуковой датчик MA40B8R открытого типа. Основные параметры приведены в таблице ниже.

Устройство Назначение Частота Направленность,
град
Емкость,
пФ
Область
детектирования,
м
Входное
напряжение,
макс, В
MA40B8S Излучатель 40 кГц 50 (симметричный) 2000 0.2 … 6 40
MA40B8R Датчик 40 кГц 50 (симметричный) 2000 0.2 … 6

Для тестирования была применена отладочная платформа компании .

Однако пользователь может использовать любой микроконтроллер PIC, у которого имеется хотя бы один канал АЦП и один канал ШИМ.

Принципиальная схема ультразвукового сенсора

Управление излучателем осуществляется посредством транзистора BD135 . Диод 1N4007 служит для защиты транзистора от обратного напряжения. Благодаря использованию транзистора и резонансной цепочки, которая образована параллельным включением дросселя L1 330 мкГн и конденсатора, образованного самим излучателем, напряжение питания излучателя составит около 20 В, что обеспечивает дальность обнаружения до 200 см. Стоит заметить, что управлять излучателем возможно непосредственно с вывода микроконтроллера, однако в таком случае диапазон расстояний не превышает 50 см.

Датчик подключен непосредственно к АЦП микроконтроллера (при использовании PIC16F877A - канал 1 АЦП), резистор, включенный параллельно датчику, необходим для согласования импеданса.

Для начала необходимо послать ультразвуковой импульс. Сигнал с частотой 40 кГц легко получить с использованием аппаратного ШИМ микроконтроллера. Отраженный сигнал с датчика поступает в АЦП, разрешение АЦП составляет 4 мВ, что вполне достаточно для считывания данных с датчика, и дополнительные компоненты не нужны.

Внешний вид макетной платы ультразвукового сенсора


Этот сенсор - самое простое решение, и поэтому имеет несколько недостатков: небольшая вибрация ультразвукового приемника может привести к неправильным измерениям. Так как посылаемый импульс не модулирован и не кодирован, посторонние источники ультразвуковой частоты могут влиять на измерение, и все это может привести к неправильным результатам (выход за пределы измерений).

Надписи на изображении:

ultrasonic burst - ультразвуковой импульс;
mechanical echo (removed by software) - механическое эхо (исключается программно);
ultrasonic wave reflected by remote object - ультразвуковая волна, отраженная от удаленного объекта.

Цена деления осциллографа: по горизонтали - 1 мс/дел, по вертикали - 5 мВ/дел.

Механическое эхо исключается программно путем введения задержки. Отраженная волна, имеющая амплитуду около 40 мВ, получена через 9.5 мс после отправленного импульса. Учитывая, что скорость звука 340 м/с, получаем:

0.0095 / 2×340 = 1.615 м.

В реальности - это был потолок помещения на расстоянии от датчика 172 см, на ЖК дисплее, установленном на отладочной плате было отображено значение 170 см.

Загрузки

Исходный код к проекту на микроконтроллере PIC16F877A (компилятор mikroC) -

HC-SR04 один из самых распространённых и самый дешевый дальномер в робототехники. Он позволяет измерять расстояния от 2см до 4м (может и больше) с приличной точностью 0,3-1см. На выходе цифровой сигнал, длительность которого пропорционально равна расстоянию до препятствий.

Ультразвуковой дальномер

Данный датчик был мною уже давно приобретен и лежал в своей коробочке почти забытый. Но в рамках одного проекта был извлечен на белый свет и, для ознакомления, на основе него и платы вольтметра был построен достаточно компактный дальномер.

УЗ дальномер HC-SR04

Характеристики датчика:

Питание — 5В
Потребляемый ток — менее 2мА
Эффективный угол обзора — 15гр
Измеряемое расстояние — 2см - 5м
Точность — 3мм
Взяты из документации к датчику

Принцип работы HC-SR04

Принцип работы

У модуля есть 4 вывода, два из которых это питание - земля и +5В, а еще два - данные. Опрос модуля производится следующим способом: на вывод Trig посылается импульс длительностью 10мкс. Дальномер генерирует посылку из 8 ультразвуковых 40КГц импульсов. Которые, отражаясь от большинства поверхностей, возвращаются обратно, если не угаснут в пути. Сразу после отправки сигнала на Trig начинаем ожидать ответного положительного сигнала выводе Echo, длительностью от 150мкс до 25мс, который пропорционален расстоянию до объекта. Точнее времени прохождения от датчика до препятствия и обратно. Если ответа нет (датчик не услышит своего эха) - то сигнал вернется длиною в 38 мс. Расстояние до объекта (препятствия) вычисляется по следующей простой формуле:

Где: L - расстояние в сантиметрах до объекта, а F - длина импульса на выводе Echo.
Рекомендуемое время опроса датчика 50мс или 20Гц.

Первые тесты этого модуля проводил при помощи цифрового осциллографа, который ловил ответ от модуля и в ручную, быстрым замыканием Trig на + питания, пытался получить стартовый 10мкс импульс. В половине случаев получалось [:)] .

Конструкция

Датчик был подключен к плате вольтметра с общим анодом, немного модифицированному для работы с ним (убраны ненужные делитель с конденсатором и добавлен вывод от RA3). Был применен микроконтроллер от 5 версии вольтметра - PIC16F688, с переработанной для УЗ дальномера прошивкой.

Этот прибор, который до сих пор считается уникальным, смог найти применение практически во всех сферах человеческой жизни. Сегодня лазерный дальномер можно увидеть в руках геологов и геодезистов. Иными словами, в тех областях человеческой деятельности, где необходимо замерить расстояние с особой точностью. Поэтому высокую популярность завоевали лазерные рулетки, отличающиеся высокой точностью, повышенной надежностью и вполне доступной ценой. Вполне естественно звучит вопрос, можно ли сделать дальномер лазерный своими руками.

К группе приборов, которые измеряют расстояние при помощи электроники, относятся: лазерный дальномер, ультразвуковой дальномер.

Измерения лазерным дальномером делаются на основе световых потоков, носителем сигнала является электромагнитное излучение, окрашенное в соответствующий оттенок. В большинстве случаев за основу берется красный свет.

Согласно законам физики, скорость света намного превышает скорость звука, поэтому и время измерения одинакового расстояния будет отличаться.

Основные причины для монтажа лазерного дальномера

Пользоваться механической рулеткой не всегда удобно. Порой она не дает положительного эффекта. В последние 10 лет все большее предпочтение отдается электронным дальномерам. К этой группе приборов, которые измеряют расстояние при помощи электроники, относятся:

  • лазерный дальномер;
  • ультразвуковой дальномер.

Все эти приборы функционируют по принципу бесконтактного метода. Такой дальномер своими руками сегодня создают отечественные мастера. Приборы работают не хуже тех, которые были выпущены в заводских условиях.

Лазерный дальномер, сделанный своими руками, состоит из нескольких частей:

  • плата;
  • микроконтроллер;
  • усилитель лазерного сигнала;
  • лазер;
  • фотоприемник;
  • фильтр.

В основном излучение лазера возникает при помощи синусоидального сигнала.

Довольно сложно получить такой сигнал, имеющий частоту 10 МГц. Простой контроллер здесь не подходит. Для этого лучше использовать меандр, у которого имеется нужная частота. Когда усиливается сигнал, приходящий из фотоприемника, удаляются ненужные гармоники специальным полосовым фильтром, который функционирует на частоте 10 МГц. На выходе появляется сигнал, сильно напоминающий синусоидальный.

Вернуться к оглавлению

Чтобы изготовить дальномер своими руками можно за основу взять схему лазерной связи. В данном случае передача данных происходит очень быстро, скорость равна 10 Мбит. Такая величина соответствует имеющейся частоте модуляции.

Для такого лазерного устройства берется самый простой усилитель мощности. Он состоит из одной микросхемы 74HC04, которая собрана из шести инверторов. Подача тока ограничивается специальными резисторами. Однако умельцы могут заменить резисторы более надежными деталями.

Пусконаладочная плата становится источником 5-вольтового напряжения. Таким образом усилитель получает питание. Чтобы убрать наводки сигнала на другую часть электрической схемы, усилительный корпус делается стальным, каждый провод экранируется.

В качестве лазера выступает привод, установленный в DVD-приставках. Такое устройство имеет вполне достаточную мощность для функционирования на частоте, достигающей 10 МГц.

В состав приемника входит:

  • фотодиод;
  • усилитель.

В состав усилителя входит полевой транзистор, специальная микросхема. Когда увеличивается расстояние, происходит падение освещенности фотодиода. Поэтому необходимо иметь мощное усиление. Собираемая схема позволяет достичь 4000 единиц.

Когда увеличивается частота, начинают уменьшаться сигналы фотодиода. Усилитель подобной конструкции является главной и сильно уязвимой частью. Его настройка требует очень высокой точности. Желательно отрегулировать коэффициент усиления таким образом, чтобы получать максимальные значения. Самым простым способом будет подача на транзистор 3 В. Можно установить обыкновенную батарейку.

Чтобы приемник начал работать, необходимо подать 12 В. Для этого устанавливается специальный блок питания.

У такого усилителя высокая чувствительность к любым наводкам, поэтому его нужно обязательно экранировать. Можно для этого воспользоваться корпусом оптического датчика. Экранирование фотодиода можно сделать из обычной фольги.

Описанная выше система позволит создать самодельный лазерный дальномер в бытовых условиях.


Ультразвуковой датчик расстояния HC-SR04 (и схожие модули) используют ультразвуковые волны, чтобы определить дистанцию до объекта.

Вообще говоря, нам нужно будет выяснить расстояние до объекта, потому что сам датчик просто учитывает время, которое уходит на то, чтобы поймать эхо от отправленных им звуковых волн. Это происходит таким образом:

  1. Модуль посылает звуковые волны, в то же время подавая напряжение на особый пин эха.
  2. Модуль ловит отраженный сигнал и снимает напряжение с пина.

Это все, что делает ультразвуковой дальномер. Дистанцию мы можем определить сами, ведь мы знаем, сколько времени заняло у звука на то, чтобы совершить путешествие от модуля и обратно (по тому, насколько долго пин эха был под напряжением), а также мы знаем скорость звука в воздухе. Но мы не будем сильно вдаваться в детали и позволим Arduino сделать все вычисления.

Кстати, несмотря на то, что принцип работы всех ультразвуковых датчиков одинаков, НЕ ВСЕ ИЗ НИХ производят одинаковый вывод напряжения на пин эха. Так что, если у вас модуль, отличный от HC-S04, то уделите внимание четвертому шагу, где описаны возможные проблемы, и проверьте, возможно, ваш модуль есть в списке. Если его там нет, то придётся разбираться своими силами.

Шаг 1: Сборка железа своими руками

Сборка очень проста (собирайте всё отключенным от напряжения):

  1. Соедините 5V от Ардуино с пином VCC на модуле
  2. Соедините GND от Ардуино с GND на модуле
  3. Соедините цифровой пин 7 на Ардуино с пином Trig на модуле
  4. Соедините цифровой модуль 8 на Ардуино с пином Эхо на модуле

Шаг 2: Программирование модуля HC-SR04

Для того чтобы видеть результаты работы программы, нужно запустить serial monitor на Ардуино. Если вы не знакомы с этой функцией, то сейчас самое время открыть её и узнать о ней побольше — это отличная вещь, помогающая отладить код. В интерфейсе Ардуино посмотрите в правый угол, там вы найдёте кнопку, запускающую серийный монитор, она похожа на увеличительное стекло, кликните на ней и монитор откроется (или выберите TOOLS/Serial Monitor, или нажмите Ctrl+Shift+M).

Вот набросок рабочей программы:

// Начала Скетча для Аруино —
// Определяем константы (константы не изменяются и если вы попробуете переопределить их то получите ошибку во время компиляции)
const int triggerPin = 7; // создаёт константу с именем «triggerPin» и назначает на неё цифровой пин 7
const int echoPin = 8; // создаёт константу с именем «echoPin» и назначает на неё цифровой пин 8
// Определяем переменные (переменные могут изменяться и обычно изменяются по ходу программы, в них могут содержаться какие-либо рассчитываемые значения)
int duration = 0; // создаёт переменную с именем «duration» для хранения значения, возвращаемого pulseIn, изначально значение задаётся равным «0»
int distance = 0; // создаёт переменную для хранения значения, рассчитанного в качестве расстояния до объекта, находящегося перед датчиком, изначально значение задаётся равным «0»
void setup() // В этой секции можно настроить вашу плату и другие параметры, необходимые для работы вашей программы.
{
Serial.begin(9600); // инициализирует последовательную коммуникацию через USB между Ардуино и компьютером, нам это понадобится
//определяем режимы пинов
pinMode(triggerPin, OUTPUT); // «triggerPin» будет использоваться для ВЫВОДА, номер пина объявлен выше в секции «Определяем переменные»
pinMode(echoPin, INPUT); // «echoPin» будет использоваться для ВВОДА, номер пина объявлен выше в секции «Определяем переменные»
} // конец настройки
// всё, что было написано выше считывается программой лишь один раз — при Запуске или Сбросе (Reset)
void loop() // код программы в зацикленной части считывается беспрестанно и повторяется до тех пор, пока не выключится питание, или пока не будет сделан сброс
{
digitalWrite(triggerPin, HIGH); //начинает подавать ультразвуковые волны с модуля HC-SR04
delay(5); // небольшая пауза, она нужна для того, чтобы модуль функционировал правильно (можно уменьшить это значение, другие мои программы работают при значении 1)
digitalWrite(triggerPin, LOW); //останавливает ультразвуковые волны, идущие от модуля HC-SR04
duration = pulseIn(echoPin, HIGH); //особая функция, позволяющая определить продолжительность времени, при котором на пин эха подавалось напряжение в последнем завершенном цикле подачи ультразвука
delay(10); // опять небольшая пауза. Она нужна для стабильности, слишком короткая пауза может не дать результата
distance = (duration/2) / 58; //преобразовываем продолжительность в расстояние (значение, сохранённое в «duration» делится на 2, затем это значение делится на 58**) ** для сантиметров
delay(500); // еще одна пауза для стабильности — можете поиграть со значением, но это может испортить работу программы, так что по умолчанию используйте 500
Serial.print(distance); //отправляет вычисленное значение расстояния на серийный монитор
Serial.println(» cm»); //добавляет слово «cm» после значения расстояния и переводит каретку на серийном мониторе на новую строку
Serial.println(); //добавляет пустую строку на серийном мониторе (для удобства чтения)
} // Конец цикла

_________________________________________________

Итак, после прочитывания моей инструкции я понял, что набросок программы не соответствует моему пониманию простоты. Поэтому я выкладываю тот же самый набросок с лёгкими комментариями.

// Программа модуля ультразвукового датчика расстояния HC-SC04
const int triggerPin = 7; //триггер на 7
const int echoPin = 8; // ECHO на 8
int duration = 0; // хранит значение из pulseIn
int distance = 0; // хранит значение рассчитанного расстояния
void setup()
{
Serial.begin(9600);
pinMode(triggerPin, OUTPUT); //определяет режимы пинов
pinMode(echoPin, INPUT);
}
void loop()
{
digitalWrite(triggerPin, HIGH); // начинает отправлять ультразвук
delay(5); //необходимая команда, настраивается (но не ниже 10микросекунд)
digitalWrite(triggerPin, LOW); // модуль прекращает отправлять ультразвук
duration = pulseIn(echoPin, HIGH); // определяет, как долго подавалось напряжение на пин ECHO
delay(10); //необходимая команда, настраивается, но аккуратно
distance = (duration/2) / 58; // высчитываем расстояние в см до объекта
delay(500); // пауза для стабильности, уменьшение может сломать ход программы, лучше оставить как есть
Serial.print(distance); // отправляет текущее значение, хранимое в distance на серийный монитор
Serial.println(» cm»); // отображает слово «cm» сразу после расстояния
Serial.println(); // создаёт одну пустую строку в серийном мониторе (для удобства чтения)
}

К инструкции я также приложу файлы.ino

Файлы

  1. HCSR04BareBones.ino — этот файл сильно закомментирован и содержит кое-какую информацию по модулю HC-SR04, а также инфу по сборке.
  2. BareBonesLight.ino — модуль с небольшим количеством комментариев

Вот мой совет. Я знаю, что код работает, но перед тем, как прикреплять файлы к инструкции, я перепроверил всё и серийный монитор стабильно показывал «0 cm». Проблема оказалась в сгоревшем модуле, а его замена исправила ситуацию.

Смотрите на то, как откликается программа, если решите поиграть со значениями команд delay. Опытным путём я обнаружил, что уменьшение значений delay или приравнивание их к 0 может привести программу к нерабочему состоянию.

После того, как вы настроили устройство, всё ограничивается лишь вашим воображением. Вы можете сверяться, что неподвижные объекты находятся на том же расстоянии и остаются неподвижными. Вы можете использовать монитор, чтобы получать уведомления о том, что какой-то объект передвинулся мимо датчика и т.д.

Схема выше использовалась мной для того, чтобы определять, что от датчика все объекты находятся на расстоянии дальше, чем 60 см. В проекте использовалось три диода и пищалка. Когда все предметы были дальше 60 см, горел зеленый диод. Когда что-то приближалось менее чем на 60см, зеленый диод гас, а красный загорался. Если объект оставался на близком расстоянии на какой-то время, то загорался второй красный диод, а пищалка начинала пищать. Когда объект удалялся на 60см, пищалка умолкала, красные диоды гасли, и снова загорался зеленый. Это не предотвращало все ложные тревоги, но работало с большинством случаев, когда мимо датчика пролетала птица или любопытная белка пробегала мимо.

Шаг 4: Известные проблемы

Если вы видите модель вашего ультразвукового модуля в этом пункте, то листайте ниже. Надеюсь, вы найдёте вашу проблему и решите её.

  1. US-105
  2. DYP-ME007TX

Модуль US-105

Ультразвуковой модуль US-105 использует вывод GPIO на пин ECHO, что подразумевает другие вычисления для определения расстояния. При выводе GPIO на пин ECHO, пин не удерживается под напряжением во время отправки волны. Вместо этого, при получении отраженного ультразвука на пин ECHO подается конкретное напряжение, которое пропорционально времени, потребовавшемуся ультразвуковой волне для того, чтобы отправиться и вернуться обратно на датчик. С этим модулем будет работать такой код:

// Код для ультразвукового модуля US-105 unsigned int EchoPin = 2; unsigned int TrigPin = 3; unsigned long Time_Echo_us = 0; //Len_mm_X100 = length*100 unsigned long Len_mm_X100 = 0; unsigned long Len_Integer = 0; // unsigned int Len_Fraction = 0; void setup() { Serial.begin(9600); pinMode(EchoPin, INPUT); pinMode(TrigPin, OUTPUT); } void loop() { digitalWrite(TrigPin, HIGH); delayMicroseconds(50); digitalWrite(TrigPin, LOW); Time_Echo_us = pulseIn(EchoPin, HIGH); if((Time_Echo_us 1)) { Len_mm_X100 = (Time_Echo_us*34)/2; Len_Integer = Len_mm_X100/100; Len_Fraction = Len_mm_X100%100; Serial.print("Растояние: "); Serial.print(Len_Integer, DEC); Serial.print("."); if(Len_Fraction < 10) Serial.print("0"); Serial.print(Len_Fraction, DEC); Serial.println("mm"); delay(1000); } // Конец программы

Модуль DYP-ME007TX

// Код для ультразвукового модуля DYP-ME007TX /* Инструкции по подключению * 5V от Ардуино к VCC на модуле * GNG от Ардуино к GND на модуле * OUT от модуля к цифровому пину 7 на Ардуино */ #include #define RXpin 7 #define TXpin 7 SoftwareSerial mySerial(RXpin, TXpin); long mili = 0; byte mybuffer = {0}; byte bitpos = 0; void setup() { Serial.begin(9600); mySerial.begin(9600); } void loop() { bitpos = 0; while (mySerial.available()) { if (bitpos < 4) { mybuffer = mySerial.read(); } else break; } mySerial.flush(); mili = mybuffer << 8 | mybuffer; Serial.print("Distance: "); Serial.print(mili / 25.4); Serial.print (" inches"); Serial.println(); delay(500); }